Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255760

RESUMO

Noribogaine (noribo) is the primary metabolite from ibogaine, an atypical psychedelic alkaloid isolated from the root bark of the African shrub Tabernanthe iboga. The main objective of this study was to test the hypothesis that molecular, electrophysiological, and behavioral responses of noribo are mediated by the 5-HT2A receptor (5-HT2AR) in mice. In that regard, we used male and female, 5-HT2AR knockout (KO) and wild type (WT) mice injected with a single noribo dose (10 or 40 mg/kg; i.p.). After 30 min., locomotor activity was recorded followed by mRNA measurements by qPCR (immediate early genes; IEG, glutamate receptors, and 5-HT2AR levels) and electrophysiology recordings of layer V pyramidal neurons from the medial prefrontal cortex. Noribo 40 decreased locomotion in male, but not female WT. Sex and genotype differences were observed for IEG and glutamate receptor expression. Expression of 5-HT2AR mRNA increased in the mPFC of WT mice following Noribo 10 (males) or Noribo 40 (females). Patch-clamp recordings showed that Noribo 40 reduced the NMDA-mediated postsynaptic current density in mPFC pyramidal neurons only in male WT mice, but no effects were found for either KO males or females. Our results highlight that noribo produces sexually dimorphic effects while the genetic removal of 5HT2AR blunted noribo-mediated responses to NMDA synaptic transmission.


Assuntos
Ibogaína , Feminino , Masculino , Animais , Camundongos , Camundongos Knockout , Ibogaína/farmacologia , Receptor 5-HT2A de Serotonina/genética , N-Metilaspartato , Serotonina , Ácido Glutâmico , RNA Mensageiro
2.
Neurotox Res ; 39(6): 2134-2140, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34581974

RESUMO

IEGs play a critical functional role of in molecular, cellular, and behavioral alterations induced by psychostimulants. IEGs appear to have specific chromatin structures that may contribute to the rapid activation of their transcription. HDAC enzymes regulate reversible acetylation of lysine residues of histones and non-histone proteins. Dysregulation of HDACs has been proposed to modulate the establishment and maintenance of aberrant transcriptional programs and behaviors associated with cognitive dysfunctions and drug addiction. In this mini-review we focus our attention on recent discoveries concerning networks of protein-protein interactions for the two classes of HDAC protein family members that are highly expressed in neurons, class I and IIa HDACs. Because dynamic histone acetylation appears to be critical to IEG expression in the brain, we discuss the role of these epigenetic regulators on IEG expression induced by cocaine and methamphetamine intake.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Genes Precoces , Histona Desacetilases/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Epigênese Genética/efeitos dos fármacos , Humanos
3.
Psychopharmacology (Berl) ; 238(3): 787-810, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33241481

RESUMO

RATIONALE: The abuse of psychostimulants has adverse consequences on the physiology of the central nervous system. In Argentina, and other South American countries, coca paste or "PACO" (cocaine and caffeine are its major components) is massively consumed with deleterious clinical consequences for the health and well-being of the general population. A scant number of studies have addressed the consequences of stimulant combination of cocaine and caffeine on the physiology of the somatosensory thalamocortical (ThCo) system. OBJECTIVES: Our aim was to study ion conductances that have important implications regulating sleep-wake states 24-h after an acute or chronic binge-like administration of a cocaine and caffeine mixture following previously analyzed pasta base samples ("PACO"-like binge") using mice. METHODS: We randomly injected (i.p.) male C57BL/6JFcen mice with a binge-like psychostimulants regimen during either 1 day (acute) or 1 day on/1 day off during 13 days for a total of 7 binges (chronic). Single-cell patch-clamp recordings of VB neurons were performed in thalamocortical slices 24 h after the last psychostimulant injection. We also recorded EEG/EMG from mice 24 h after being systemically treated with chronic administration of cocaine + caffeine versus saline, vehicle. RESULTS: Our results showed notorious changes in the intrinsic properties of the VB nucleus neurons that persist after 24-h of either acute or chronic binge administrations of combined cocaine and caffeine ("PACO"-like binge). Functional dysregulation of HCN (hyperpolarization-activated cyclic nucleotide-gated) and T-type VGC (voltage-gated calcium) channels was described 24-h after acute/chronic "PACO"-like administrations. Furthermore, intracellular basal [Ca2+] disturbances resulted a key factor that modulated the availability and the activation of T-type channels, altering T-type "window currents." As a result, all these changes ultimately shaped the low-threshold spikes (LTS)-associated Ca2+ transients, regulated the membrane excitability, and altered sleep-wake transitions. CONCLUSION: Our results suggest that deleterious consequences of stimulants cocaine and caffeine combination on the thalamocortical physiology as a whole might be related to potential neurotoxic effects of soaring intracellular [Ca2+].


Assuntos
Cafeína/efeitos adversos , Canais de Cálcio Tipo T/metabolismo , Estimulantes do Sistema Nervoso Central/efeitos adversos , Cocaína/efeitos adversos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neurônios/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Cafeína/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cocaína/administração & dosagem , Sinergismo Farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Distribuição Aleatória , Transtornos da Transição Sono-Vigília/induzido quimicamente , América do Sul , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
4.
J Neuroimmune Pharmacol ; 16(3): 651-666, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33221983

RESUMO

IMT504 is a non-CPG, non-coding synthetic oligodeoxinucleotide (ODN) with immunomodulatory properties and a novel inhibitory role in pain transmission, exerting long-lasting analgesic effects upon multiple systemic administrations. However, its mechanisms of anti-nociceptive action are still poorly understood. In the present study in male adult rats undergoing complete Freund's adjuvant-induced hindpaw inflammation, we focused in the analysis of the immunomodulatory role of IMT504 over the cellular infiltrate, the impact on the inflammatory milieu, and the correlation with its anti-allodynic role. By means of behavioral analysis, we determined that a single subcutaneous administration of 6 mg/kg of IMT504 is sufficient to exert a 6-week-long full reversal of mechanical and cold allodynia, compromising neither acute pain perception nor locomotor activity. Importantly, we found that the anti-nociceptive effects of systemic IMT504, plus quick reductions in hindpaw edema, were associated with a modulatory action upon cellular infiltrate of B-cells, macrophages and CD8+ T-cells populations. Accordingly, we observed a profound downregulation of several inflammatory leukocyte adhesion proteins, chemokines and cytokines, as well as of ß-endorphin and an increase in the anti-inflammatory cytokine, interleukin-10. Altogether, we demonstrate that at least part of the anti-nociceptive actions of IMT504 relate to the modulation of the peripheral immune system at the site of injury, favoring a switch from pro- to anti-inflammatory conditions, and provide further support to its use against chronic inflammatory pain. Graphical abstract GA short description - IMT504 systemic Administration. Systemic administration of the non-CpG ODN IMT504 results in a 6-week long blockade of pain-like behavior in association with anti-inflammatory responses at the site of injury. These include modulation of lymphoid and myeloid populations plus downregulated expression levels of multiple pro-inflammatory cytokines and ß-endorphin. Nocifensive responses and locomotion remain unaltered.


Assuntos
Analgesia , Dor Crônica , Animais , Linfócitos T CD8-Positivos , Dor Crônica/tratamento farmacológico , Modelos Animais de Doenças , Hiperalgesia , Inflamação/tratamento farmacológico , Masculino , Oligodesoxirribonucleotídeos , Ratos
5.
Neurotox Res ; 38(2): 498-507, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32367472

RESUMO

Psychostimulant drugs, such as modafinil and caffeine, induce transcriptional alterations through the dysregulation of epigenetic mechanisms. We have previously demonstrated that acute modafinil administration is accompanied by multiple changes in the expression of histone deacetylases (HDACs) within the mouse medial prefrontal cortex (mPFC). Herein, we compared alterations in class IIa HDACs in the mouse mPFC and dorsal striatum (DS) after a single exposure to each psychostimulant. We treated male C57BL/6 mice with modafinil (90 mg/kg, i.p.), caffeine (10 mg/kg, i.p.), or vehicle and evaluated locomotor activity. Following, we examined hdac4, hdac5, and hdac7 mRNA expression using qRT-PCR and HDAC7, pHDAC7, and pHDACs4/5/7 using Western blot. Last, we explored generalized effects in N2a cell line using modafinil (100 µM and 1 mM) or caffeine (80 µM and 800 µM). Our results indicate that modafinil had greater effects on locomotor activity compared with caffeine. qRT-PCR experiments revealed that modafinil decreased hdac5 and hdac7 mRNA expression in the DS, while caffeine had no effects. In the mPFC, modafinil increased hdac7 mRNA expression, with no effects observed for caffeine. Western blot revealed that within the DS, modafinil induced increases in HDAC7, pHDAC7, and pHDACs4/5/7 protein expression, while, in the mPFC, caffeine induced decreases in HDAC7, pHDAC7, and pHDACs4/5/7 protein levels. In vitro studies revealed that modafinil increased hdac4, hdac5, and hdac7 mRNA levels in N2a, while caffeine only increased hdac5 at a higher dose. These findings support the notion that modafinil and caffeine exert distinct regulation of class IIa HDAC family members and that these transcriptional and translational consequences are region-specific.


Assuntos
Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Histona Desacetilases/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Modafinila/farmacologia , Animais , Linhagem Celular , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Masculino , Camundongos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Promotores da Vigília/farmacologia
6.
Psychopharmacology (Berl) ; 237(5): 1481-1491, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32034449

RESUMO

RATIONALE: In previous studies, we have demonstrated that seized samples of a smokable form of cocaine, also known as coca paste (CP), induced behavioral sensitization in rats. Interestingly, this effect was accelerated and enhanced when the samples were adulterated with caffeine. While the cocaine phenomenon is associated with persistent functional and structural alterations in the prefrontal cortex (PFC) and nucleus accumbens (NAc), the molecular mechanisms underlying the CP sensitization and the influence of caffeine remains still unknown. OBJECTIVE: We examined the gene expression in NAc and mPFC after the expression caffeine-adulterated and non-adulterated CP locomotor sensitization. METHODS: The locomotor sensitization was established in C57BL/6 mice, repeatedly treated with a CP-seized sample adulterated with caffeine (CP-2) and a non-adulterated one (CP-1). We then assessed the mRNA expression of receptor subunits of the dopaminergic and glutamatergic systems in the medial PFC (mPFC) and NAc. Other molecular markers (e.g., adenosinergic, endocannabinoid receptor subunits, and synaptic plasticity-associated genes) were also analyzed. RESULTS: Only CP-2-treated mice expressed locomotor sensitization. This phenomenon was associated with increased Drd1a, Gria1, Cnr1, and Syn mRNA expression levels in the NAc. Drd3 mRNA expression levels were only significantly increased in mPFC of CP-2-treated group. CONCLUSIONS: Our results demonstrated that caffeine actively collaborates in the induction of the molecular changes underlying CP sensitization. The present study provides new knowledge on the impact of active adulterants to understand the early dependence induced by CP consumption.


Assuntos
Cafeína/administração & dosagem , Cocaína/administração & dosagem , Contaminação de Medicamentos , Locomoção/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Coca , Dopamina/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos
7.
Neuropharmacology ; 165: 107922, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31923766

RESUMO

The pedunculopontine nucleus (PPN) has long been known to be part of the reticular activating system (RAS) in charge of arousal and REM sleep. We previously showed that in vitro exposure to a HDAC Class I and II mixed inhibitor (TSA), or a specific HDAC class IIa inhibitor (MC 1568), decreased PPN gamma oscillations. Given the lack of information on systemic in vivo treatments on neuronal synaptic properties, the present study was designed to investigate the systemic effect of HDAC inhibitors (HDACi) on PPN rhythmicity. Rat pups were injected (acute, single dose) with TSA (4 or 20 mg/kg), MC1568 (4 or 20 mg/kg), or MS275 (20 or 100 mg/kg). Our results show that MC1568 (20 mg/kg) reduced mean frequency of PPN oscillations at gamma band, while increasing mean input resistance (Rm) of PPN neurons. For TSA (4 and 20 mg/kg), we observed reduced mean frequency of oscillations at gamma band and increased mean Rm of PPN neurons. Systemic administration of 20 mg/kg MC1568 and TSA effects on Rm were washed out after 60 min of in vitro incubation of PPN slices, suggesting an underlying functional recovery of PPN calcium-mediated gamma band oscillations over time. In addition, at a lower dose, 4 mg/kg, MC1568 and TSA induced higher mean amplitude gamma oscillations. Blocking HDAC class I might not have deleterious effects on gamma activity, but, more importantly, the inhibition of HDAC class I (at 100 mg/kg) increased gamma band oscillations. In conclusion, the present results in vivo validate our previous findings in vitro and further expand information on the effects of HDAC inhibition on PPN rhythmicity. PPN neurons require normal activity of HDAC class IIa in order to oscillate at gamma band.


Assuntos
Ritmo Gama , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/fisiologia , Neurônios/fisiologia , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Núcleo Tegmental Pedunculopontino/fisiologia , Animais , Benzamidas/administração & dosagem , Feminino , Ritmo Gama/efeitos dos fármacos , Ácidos Hidroxâmicos/administração & dosagem , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piridinas/administração & dosagem , Pirróis/administração & dosagem , Ratos Sprague-Dawley
8.
Addict Biol ; 25(2): e12737, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30811820

RESUMO

Dysregulation of histone deacetylases (HDAC) has been proposed as a potential contributor to aberrant transcriptional profiles that can lead to changes in cognitive functions. It is known that METH negatively impacts the prefrontal cortex (PFC) leading to cognitive decline and addiction whereas modafinil enhances cognition and has a low abuse liability. We investigated if modafinil (90 mg/kg) and methamphetmine (METH) (1 mg/kg) may differentially influence the acetylation status of histones 3 and 4 (H3ac and H4ac) at proximal promoters of class I, II, III, and IV HDACs. We found that METH produced broader acetylation effects in comparison with modafinil in the medial PFC. For single dose, METH affected H4ac by increasing its acetylation at class I Hdac1 and class IIb Hdac10, decreasing it at class IIa Hdac4 and Hdac5. Modafinil increased H3ac and decreased H4ac of Hdac7. For mRNA, single-dose METH increased Hdac4 and modafinil increased Hdac7 expression. For repeated treatments (4 d after daily injections over 7 d), we found specific effects only for METH. We found that METH increased H4ac in class IIa Hdac4 and Hdac5 and decreased H3/H4ac at class I Hdac1, Hdac2, and Hdac8. At the mRNA level, repeated METH increased Hdac4 and decreased Hdac2. Class III and IV HDACs were only responsive to repeated treatments, where METH affected the H3/H4ac status of Sirt2, Sirt3, Sirt7, and Hdac11. Our results suggest that HDAC targets linked to the effects of modafinil and METH may be related to the cognitive-enhancing vs cognitive-impairing effects of these psychostimulants.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Histona Desacetilases/efeitos dos fármacos , Metanfetamina/farmacologia , Modafinila/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/fisiopatologia
9.
Am J Physiol Cell Physiol ; 318(2): C282-C288, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747316

RESUMO

The pedunculopontine nucleus (PPN) is part of the reticular activating system (RAS) in charge of arousal and rapid eye movement sleep. The presence of high-frequency membrane oscillations in the gamma-band range in the PPN has been extensively demonstrated both in vivo and in vitro. Our group previously described histone deacetylation (HDAC) inhibition in vitro induced protein changes in F-actin cytoskeleton and intracellular Ca2+ concentration regulation proteins in the PPN. Here, we present evidence that supports the presence of a fine balance between HDAC function and calcium calmodulin kinase II-F-actin interactions in the PPN. We modified F-actin polymerization in vitro by using jasplakinolide (1 µM, a promoter of F-actin stabilization), or latrunculin-B (1 µM, an inhibitor of actin polymerization). Our results showed that shifting the balance in either direction significantly reduced PPN gamma oscillation as well as voltage-dependent calcium currents.


Assuntos
Actinas/metabolismo , Epigênese Genética/fisiologia , Neurônios/metabolismo , Núcleo Tegmental Pedunculopontino/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Epigênese Genética/genética , Feminino , Masculino , Potenciais da Membrana/fisiologia , Ratos , Ratos Sprague-Dawley
10.
Biochem Pharmacol ; 170: 113662, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31606411

RESUMO

Acetaminophen (APAP) administration at therapeutic doses is safe, however overdosing produces hepatocellular injury via a multifactorial mechanism(s) that involves generation of reactive oxygen species (ROS), being the most common cause of acute liver failure (ALF) in the northern hemisphere. Brain alterations induced by APAP intoxication are usually considered secondary to hepatic encephalopathy development due to ALF. Although APAP is primarily metabolized in the liver, it is also distributed and metabolized homogeneously in the brain, affecting brain redox status. Nevertheless, comprehensive studies on the potential of APAP intoxication to produce brain toxicity are scarce. The aim of this study was to characterize the direct toxic effects of APAP in different regions of the brain and on behavior in rats where the magnitude of hepatotoxicity produced is not associated with ALF. The present work demonstrates that APAP intoxication producing hepatotoxicity, but not ALF in rats, is associated with marked hypolocomotion. Our studies also suggest that selective downregulation in dopamine levels in brain areas that regulate motor activity may be responsible, in part, for the decreased locomotion observed with APAP treatment. Furthermore, we observed that the brain histoarchitecture is conserved and that edema is not present. However, an increase in oxidative stress, reactive astrogliosis and a decrease in neuron processes are the main features observed in APAP-intoxicated animals. These effects might be partly due to direct toxic effects of APAP in brain, since the same reactive astrogliosis observed in rats was also observed in rat primary astrocyte cultures exposed to APAP.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Encéfalo/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Gliose/induzido quimicamente , Locomoção/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Gliose/metabolismo , Locomoção/fisiologia , Masculino , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
11.
Heliyon ; 5(8): e02265, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31497668

RESUMO

BACKGROUND: Gamma oscillations serve complex processes, and the first stage of their generation is the reticular activating system (RAS), which mediates the gamma-activity states of waking and paradoxical sleep. We studied whether the pedunculopontine nucleus (PPN), part of the RAS in which every cell manifests intrinsic gamma oscillations, undergoes changes resulting in distinctive protein expression. NEW METHOD: We previously found that a histone deacetylation inhibitor, trichostatin A (TSA), acutely (30 min) blocked these oscillations. We developed a proteomic method for sampling stimulated and unstimulated PPN and determining protein expression in 1 mm punches of tissue from brain slices subjected to various treatments. RESULTS: We compared brain slices exposed for 30 min to TSA (unstimulated), to the cholinergic agonist carbachol (CAR), known to induce PPN gamma oscillations, or exposed to both TSA + CAR.Comparison with existing methods: Label-free proteomics provides an unbiased and sensitive method to detect protein changes in the PPN. Our approach is superior to antibody-based methods that can lack specificity and can only be done for known targets. Proteomics methods like these have been leveraged to study molecular pathways in numerous systems and disease states. CONCLUSIONS: Significant protein changes were seen in two functions essential to the physiology of the PPN: cytoskeletal and intracellular [Ca2+] regulation proteins. TSA decreased, while CAR increased, and TSA + CAR had intermediate effects, on expression of these proteins. These results support the feasibility of the methods developed for determining proteomic changes in small samples of tissue participating in the most complex of brain processes.

12.
Brain Sci ; 9(3)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889866

RESUMO

Our discovery of low-threshold stimulation-induced locomotion in the pedunculopontine nucleus (PPN) led to the clinical use of deep brain stimulation (DBS) for the treatment of disorders such as Parkinson's disease (PD) that manifest gait and postural disorders. Three additional major discoveries on the properties of PPN neurons have opened new areas of research for the treatment of motor and arousal disorders. The description of (a) electrical coupling, (b) intrinsic gamma oscillations, and (c) gene regulation in the PPN has identified a number of novel therapeutic targets and methods for the treatment of a number of neurological and psychiatric disorders. We first delve into the circuit, cellular, intracellular, and molecular organization of the PPN, and then consider the clinical results to date on PPN DBS. This comprehensive review will provide valuable information to explain the network effects of PPN DBS, point to new directions for treatment, and highlight a number of issues related to PPN DBS.

13.
Neurochem Int ; 124: 10-18, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30557593

RESUMO

Although some of the clinical manifestations of substance use disorders might be superficially similar, it is highly likely that different classes of abused drugs including opioids (heroin, morphine, and oxycodone, other opioids) and psychostimulants (cocaine and amphetamines) cause different neuroadaptations in various brain regions dependent in the distribution and concentration of their biochemical sites of actions. In fact, different molecular networks are indeed impacted by acute and chronic administration of addictive substances. Some of the genes whose expression is influenced by the administration of these substances are immediate-early genes (IEGs). IEGs include classes of low expression genes that can become very highly induced within seconds or minutes of activation by endogenous or exogenous stimuli. These IEGs might play important roles in activating target genes that regulate adaptations implicated in the behavioral manifestations diagnosed as addiction. Therefore, the purpose of this review is to provide an overview of recent data on the effects of psychostimulants and opioids on IEG expression in the brain. The review documents some contrasting effects of these classes of drugs on gene expression and indicates that further studies are necessary to identify the specific effects of each drug class when trying to predict clinical responses to therapeutic agents.


Assuntos
Analgésicos Opioides/farmacologia , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Genes Precoces/fisiologia , Rede Nervosa/metabolismo , Recompensa , Animais , Encéfalo/efeitos dos fármacos , Expressão Gênica , Genes Precoces/efeitos dos fármacos , Humanos , Rede Nervosa/efeitos dos fármacos
14.
Bipolar Disord ; 21(2): 108-116, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506611

RESUMO

OBJECTIVES: This limited review examines the role of the reticular activating system (RAS), especially the pedunculopontine nucleus (PPN), one site of origin of bottom-up gamma, in the symptoms of bipolar disorder (BD). METHODS: The expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of BD patients is increased. It has recently been found that all PPN neurons manifest intrinsic membrane beta/gamma frequency oscillations mediated by high threshold calcium channels, suggesting that it is one source of bottom-up gamma. This review specifically addresses the involvement of these channels in the manifestation of BD. RESULTS: Excess NCS-1 was found to dampen gamma band oscillations in PPN neurons. Lithium, a first line treatment for BD, was found to decrease the effects of NCS-1 on gamma band oscillations in PPN neurons. Moreover, gamma band oscillations appear to epigenetically modulate gene transcription in PPN neurons, providing a new direction for research in BD. CONCLUSIONS: This is an area needing much additional research, especially since the dysregulation of calcium channels may help explain many of the disorders of arousal in, elicit unwanted neuroepigenetic modulation in, and point to novel therapeutic avenues for, BD.


Assuntos
Transtorno Bipolar/metabolismo , Ritmo Gama/fisiologia , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Núcleo Tegmental Pedunculopontino/metabolismo , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Canais de Cálcio/metabolismo , Epigênese Genética , Humanos , Neurônios/metabolismo , Neurônios/patologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-30056065

RESUMO

METH use causes neuroadaptations that negatively impact the prefrontal cortex (PFC) leading to addiction and associated cognitive decline in animals and humans. In contrast, modafinil enhances cognition by increasing PFC function. Accumulated evidence indicates that psychostimulant drugs, including modafinil and METH, regulate gene expression via epigenetic modifications. In this study, we measured the effects of single-dose injections of modafinil and METH on the protein levels of acetylated histone H3 (H3ac) and H4ac, deacetylases HDAC1 and HDAC2, and of the NMDA subunit GluN1 in the medial PFC (mPFC) of mice euthanized 1 h after drug administration. To test if dopamine (DA) receptors (DRs) participate in the biochemical effects of the two drugs, we injected the D1Rs antagonist, SCH23390, or the D2Rs antagonist, raclopride, 30 min before administration of METH and modafinil. We evaluated each drug effect on glutamate synaptic transmission in D1R-expressing layer V pyramidal neurons. We also measured the enrichment of H3ac and H4ac at the promoters of several genes including DA, NE, orexin, histamine, and glutamate receptors, and their mRNA expression, since they are responsive to chronic modafinil and METH treatment. Acute modafinil and METH injections caused similar effects on total histone acetylation, increasing H3ac and decreasing H4ac, and they also increased HDAC1, HDAC2 and GluN1 protein levels in the mouse mPFC. In addition, the effects of the drugs were prevented by pre-treatment with D1Rs and D2Rs antagonists. Specifically, the changes in H4ac, HDAC2, and GluN1 were responsive to SCH23390, whereas those of H3ac and GluN1 were responsive to raclopride. Whole-cell patch clamp in transgenic BAC-Drd1a-tdTomato mice showed that METH, but not modafinil, induced paired-pulse facilitation of EPSCs, suggesting reduced presynaptic probability of glutamate release onto layer V pyramidal neurons. Analysis of histone 3/4 enrichment at specific promoters revealed: i) distinct effects of the drugs on histone 3 acetylation, with modafinil increasing H3ac at Drd1 and Adra1b promoters, but METH increasing H3ac at Adra1a; ii) distinct effects on histone 4 acetylation enrichment, with modafinil increasing H4ac at the Drd2 promoter and decreasing it at Hrh1, but METH increasing H4ac at Drd1; iii) comparable effects of both psychostimulants, increasing H3ac at Drd2, Hcrtr1, and Hrh1 promoters, decreasing H3ac at Hrh3, increasing H4ac at Hcrtr1, and decreasing H4ac at Hcrtr2, Hrh3, and Grin1 promoters. Interestingly, only METH altered mRNA levels of genes with altered histone acetylation status, inducing increased expression of Drd1a, Adra1a, Hcrtr1, and Hrh1, and decreasing Grin1. Our study suggests that although acute METH and modafinil can both increase DA neurotransmission in the mPFC, there are similar and contrasting epigenetic and transcriptional consequences that may account for their divergent clinical effects.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Epigênese Genética/efeitos dos fármacos , Metanfetamina/farmacologia , Modafinila/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptores Dopaminérgicos/metabolismo , Animais , Benzazepinas/farmacologia , Imunoprecipitação da Cromatina , Dopaminérgicos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Córtex Pré-Frontal/citologia , Racloprida/farmacologia , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Receptores Dopaminérgicos/genética
16.
Sci Rep ; 8(1): 13156, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177751

RESUMO

Epigenetic mechanisms (i.e., histone post-translational modification and DNA methylation) play a role in regulation of gene expression. The pedunculopontine nucleus (PPN), part of the reticular activating system, manifests intrinsic gamma oscillations generated by voltage-dependent, high threshold N- and P/Q-type Ca2+ channels. We studied whether PPN intrinsic gamma oscillations are affected by inhibition of histone deacetylation. We showed that, a) acute in vitro exposure to the histone deacetylation Class I and II inhibitor trichostatin A (TSA, 1 µM) eliminated oscillations in the gamma range, but not lower frequencies, b) pre-incubation with TSA (1 µM, 90-120 min) also decreased gamma oscillations, c) Ca2+ currents (ICa) were reduced by TSA, especially on cells with P/Q-type channels, d) a HDAC Class I inhibitor MS275 (500 nM), and a Class IIb inhibitor Tubastatin A (150-500 nM), failed to affect gamma oscillations, e) MC1568, a HDAC Class IIa inhibitor (1 µM), blocked gamma oscillations, and f) the effects of both TSA and MC1568 were blunted by blockade of CaMKII with KN-93 (1 µM). These results suggest a cell type specific effect on gamma oscillations when histone deacetylation is blocked, suggesting that gamma oscillations through P/Q-type channels modulated by CaMKII may be linked to processes related to gene transcription.


Assuntos
Canais de Cálcio Tipo P/genética , Canais de Cálcio Tipo Q/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Neurônios/efeitos dos fármacos , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Benzamidas/farmacologia , Benzilaminas/farmacologia , Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo Q/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Microtomia , Neurônios/citologia , Neurônios/metabolismo , Núcleo Tegmental Pedunculopontino/citologia , Núcleo Tegmental Pedunculopontino/metabolismo , Cultura Primária de Células , Piridinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sulfonamidas/farmacologia , Técnicas de Cultura de Tecidos , Transcrição Gênica
17.
Reprod Biomed Online ; 37(3): 269-278, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30126647

RESUMO

RESEARCH QUESTION: Recent evidence suggests that cocaine administration in animal models can trigger non-genetic inheritance of addiction traits from father to offspring, affecting development and behaviour. Is chronic cocaine intake involved in alterations of epigenetic homeostasis in the testis? DESIGN: Epigenetic marks and mediators in testis and isolated germ cells of adult mice treated with cocaine (10 mg/kg) or vehicle (sterile saline solution) were evaluated in an intermittent binge protocol: three intraperitoneal injections, 1 h apart, one day on/off for 13 days, collecting tissue 24 h after the last binge administration (day 14). RESULTS: It was shown that chronic cocaine intake in mice disrupts testicular epigenetic homeostasis, increasing global methylated cytosine levels in DNA from germ cells and sperm. Cocaine also increased testicular and germ cell acetylated histone 3 and 4 and decreased expression of histone deacetylases HDAC1/2. Immunolocalization studies showed that HDAC1/2 and acetylated histone 3 and 4 proteins localize to meiotic germ cells. Analysis of mRNA expression in isolated germ cells shows decreased levels of Hdac1/2/8, Dnmt3b and Tet1 and increased levels of Dnmt3a gene expression after cocaine treatment. CONCLUSIONS: Cocaine intake is associated with testicular toxicity and significant reproductive function impairment. The results presented here broaden the basic knowledge of the impact of addictive stimulants on testicular pathophysiology, fertility and male reproductive health and imply that altered epigenetic homeostasis by cocaine may have potential consequences on future generations.


Assuntos
Cocaína/farmacologia , Metilação de DNA/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Histonas/metabolismo , Testículo/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Epigênese Genética/efeitos dos fármacos , Masculino , Camundongos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Testículo/metabolismo
18.
Brain Struct Funct ; 223(5): 2499-2514, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29520482

RESUMO

Leptin is an adipose-derived hormone that controls appetite and energy expenditure. Leptin receptors are expressed on extra-hypothalamic ventrobasal (VB) and reticular thalamic (RTN) nuclei from embryonic stages. Here, we studied the effects of pressure-puff, local application of leptin on both synaptic transmission and action potential properties of thalamic neurons in thalamocortical slices. We used whole-cell patch-clamp recordings of thalamocortical VB neurons from wild-type (WT) and leptin-deficient obese (ob/ob) mice. We observed differences in VB neurons action potentials and synaptic currents kinetics when comparing WT vs. ob/ob. Leptin reduced GABA release onto VB neurons throughout the activation of a JAK2-dependent pathway, without affecting excitatory glutamate transmission. We observed a rapid and reversible reduction by leptin of the number of action potentials of VB neurons via the activation of large conductance Ca2+-dependent potassium channels. These leptin effects were observed in thalamocortical slices from up to 5-week-old WT but not in leptin-deficient obese mice. Results described here suggest the existence of a leptin-mediated trophic modulation of thalamocortical excitability during postnatal development. These findings could contribute to a better understanding of leptin within the thalamocortical system and sleep deficits in obesity.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Leptina/farmacologia , Neurônios/efeitos dos fármacos , Núcleos Talâmicos/citologia , Núcleos Talâmicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Janus Quinase 2/metabolismo , Leptina/deficiência , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Transdução de Sinais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais Sinápticos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Tetrodotoxina/farmacologia , Tirfostinas/farmacologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-29247759

RESUMO

Methamphetamine (METH) and modafinil are psychostimulants with different long-term cognitive profiles: METH is addictive and leads to cognitive decline, whereas modafinil has little abuse liability and is a cognitive enhancer. Increasing evidence implicates epigenetic mechanisms of gene regulation behind the lasting changes that drugs of abuse and other psychotropic compounds induce in the brain, like the control of gene expression by histones 3 and 4 tails acetylation (H3ac and H4ac) and DNA cytosine methylation (5-mC). Mice were treated with a seven-day repeated METH, modafinil or vehicle protocol and evaluated in the novel object recognition (NOR) test or sacrificed 4days after last injection for molecular assays. We evaluated total H3ac, H4ac and 5-mC levels in the medial prefrontal cortex (mPFC), H3ac and H4ac promotor enrichment (ChIP) and mRNA expression (RT-PCR) of neurotransmitter systems involved in arousal, wakefulness and cognitive control, like dopaminergic (Drd1 and Drd2), α-adrenergic (Adra1a and Adra1b), orexinergic (Hcrtr1 and Hcrtr2), histaminergic (Hrh1 and Hrh3) and glutamatergic (AMPA Gria1 and NMDA Grin1) receptors. Repeated METH and modafinil treatment elicited different cognitive outcomes in the NOR test, where modafinil-treated mice performed as controls and METH-treated mice showed impaired recognition memory. METH-treated mice also showed i) decreased levels of total H3ac and H4ac, and increased levels of 5-mC, ii) decreased H3ac enrichment at promoters of Drd2, Hcrtr1/2, Hrh1 and Grin1, and increased H4ac enrichment at Drd1, Hrh1 and Grin1, iii) increased mRNA of Drd1a, Grin1 and Gria1. Modafinil-treated mice shared none of these effects and showed increased H3ac enrichment and mRNA expression at Adra1b. Modafinil and METH showed similar effects linked to decreased H3ac in Hrh3, increased H4ac in Hcrtr1, and decreased mRNA expression of Hcrtr2. The specific METH-induced epigenetic and transcriptional changes described here may be related to the long-term cognitive decline effects of the drug and its detrimental effects on mPFC function. The lack of similar epigenetic effects of chronic modafinil administration supports this notion.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Modafinila/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Acetilação/efeitos dos fármacos , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Metilação de DNA/efeitos dos fármacos , Histonas/metabolismo , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia
20.
Mol Neurobiol ; 55(6): 5154-5166, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28842817

RESUMO

Methamphetamine (METH) addiction is a biopsychosocial disorder that is accompanied by multiple relapses even after prolonged abstinence, suggesting the possibilities of long-lasting maladaptive epigenetic changes in the brain. Here, we show that METH administration produced time-dependent increases in the expression of corticotropin-releasing hormone (Crh/Crf), arginine vasopressin (Avp), and cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt) mRNAs in the rat nucleus accumbens (NAc). Chromatin immunoprecipitation (ChIP) assays revealed that METH increased the abundance of phosphorylated CREB (pCREB) at the promoter of Cartpt but not at Avp or Crh DNA sequences. In contrast, METH produced DNA hypomethylation at sites near the Crh transcription start site (TSS) and at intragenic Avp sequences. METH also increased DNA hydroxymethylation at the Crh TSS and at intragenic Avp sites. In addition, METH increased the protein expression of ten-eleven-translocation enzymes that catalyze DNA hydroxymethylation. Importantly, METH increased TET1 binding at the Crh promoter and increased TET3 binding at Avp intragenic regions. We further tested the role of TET enzymes in METH-induced changes in gene expression by using the TET inhibitor, 1,5-isoquinolinediol (IQD), and found that IQD blocked METH-induced increases in Crh and Avp mRNA expression. Together, these results indicate that METH produced changes in neuropeptide transcription by both activation of the cAMP/CREB pathway and stimulation of TET-dependent DNA hydroxymethylation. These results provide molecular evidence for epigenetic controls of METH-induced changes in the expression of neuropeptides.


Assuntos
Arginina Vasopressina/genética , Hormônio Liberador da Corticotropina/genética , Metilação de DNA/genética , Dioxigenases/metabolismo , Metanfetamina/farmacologia , Núcleo Accumbens/metabolismo , Animais , Arginina Vasopressina/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Modelos Biológicos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...